首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   14437篇
  免费   2475篇
  国内免费   2586篇
化学   10705篇
晶体学   334篇
力学   936篇
综合类   280篇
数学   1739篇
物理学   5504篇
  2024年   10篇
  2023年   177篇
  2022年   327篇
  2021年   401篇
  2020年   465篇
  2019年   540篇
  2018年   471篇
  2017年   542篇
  2016年   673篇
  2015年   733篇
  2014年   831篇
  2013年   1107篇
  2012年   1274篇
  2011年   1315篇
  2010年   998篇
  2009年   1075篇
  2008年   1143篇
  2007年   1047篇
  2006年   1021篇
  2005年   816篇
  2004年   734篇
  2003年   599篇
  2002年   708篇
  2001年   631篇
  2000年   407篇
  1999年   327篇
  1998年   222篇
  1997年   132篇
  1996年   131篇
  1995年   111篇
  1994年   94篇
  1993年   93篇
  1992年   55篇
  1991年   57篇
  1990年   52篇
  1989年   45篇
  1988年   33篇
  1987年   26篇
  1986年   19篇
  1985年   21篇
  1984年   7篇
  1983年   4篇
  1982年   2篇
  1981年   4篇
  1980年   3篇
  1979年   3篇
  1965年   1篇
  1959年   2篇
  1957年   1篇
  1936年   6篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
72.
Water electrolysis offers a promising green technology to tackle the global energy and environmental crisis, but its efficiency is greatly limited by the sluggish reaction kinetics of both the cathodic hydrogen evolution reaction (HER) and anodic oxygen evolution reaction (OER). In this work, by growing amorphous multi-transition-metal (cobalt and iron) oxide on two-dimensional (2D) black phosphorus (BP), we develop a bifunctional electrocatalyst (CoFeO@BP), which is able to efficiently catalyze both HER and OER. The overpotentials for the hybrid CoFeO@BP catalyst to reach a current density of 10 mA cm−2 in 1 m KOH are 88 and 266 mV for HER and OER, respectively. Based on a series of ex-situ and in situ investigations, the excellent catalytic performance of CoFeO@BP is found to result from the adaptive surface structure under reduction and oxidation potentials. CoFeO@BP can be transformed to CoFe phosphide under reduction potential, in situ generating the real active catalyst for HER.  相似文献   
73.
Bioanalysis assays that reliably quantify biotherapeutics and biomarkers in biological samples play pivotal roles in drug discovery and development. Liquid chromatography coupled with mass spectrometry (LC–MS), owing to its superior specificity, faster method development and multiplex capability, has evolved as one of the most important platforms for bioanalysis of biotherapeutics, particularly new scaffolds such as half-life extension platforms for proteins and peptides, as well as antibody drug conjugates. Intact LC–MS analysis is orthogonal to bottom-up surrogate peptide approach by providing whole molecule quantitation and high-level sequence and structure information. Here we review the latest development in LC–MS bioanalysis of intact proteins and peptides by summarizing recent publications and discussing the important topics such as the comparison between top-down intact analysis and bottom-up surrogate peptide approach, as well as simultaneous quantitation and catabolite identification. Key bioanalytical issues around intact protein bioanalysis such as sensitivity, data processing strategies, specificity, sample preparation and LC condition are elaborated. For peptides, topics including quantitation of intact peptide vs. digested surrogate peptide, metabolites, sensitivity, LC condition, assay performance, internal standard and sample preparation are discussed.  相似文献   
74.
Importing intramolecular hydrogen bond in phosphorescent transition metal complexes has been considered one of the excellent approaches to improve the electroluminescence performance of organic light-emitting diodes in real applications. However, the relationships between such H-bond structure and phosphorescent properties have not been theoretically revealed yet. In this study, two types of intramolecular hydrogen bonds are introduced into the two classes of traditional materials, that is, Pt(II) and Ir(III) complexes ( 1a and 2a ) to completely elucidate their influence on the structures and properties by comparing with the original phosphors ( 1b and 2b ) using density functional theory/time-dependent density functional theory for the first time. A comprehensive analysis of the geometric structures, molecular orbitals, and luminescence properties (including phosphorescence emission wavelengths and radiative and nonradiative decay processes) has been carried out. Our theoretical model highlights that complexes 1a and 2a embedded with H-bonds significantly promote the phosphorescence emission band blue-shifted and restrict molecular deformations compared with the corresponding 1b and 2b , which can provide helpful guidance to regulate and design several aspects of highly efficient blue phosphorescent emitters.  相似文献   
75.
The considerations for use of compact nuclear magnetic resonance in a large-scale industrial environment clearly differ from those in academic and educational settings and even from those in smaller companies. In the first part of this article, these differences will be discussed along with the additional requirements that need to be fulfilled for successful applicability in different use cases. In the second part of the article, outcomes from different research activities aiming to fulfill these requirements will be presented with a focus on an online reaction-monitoring study on a lab-scale nucleophilic chlorination reaction.  相似文献   
76.
Cationic compounds often serve as antibacterial materials for a wide range of applications. However, the relationship of topology−antibacterial activity has been rarely revealed. Herein, three cationic polythioethers (CPTEs) with hyperbranched topologies are well designed and facilely synthesized via an all-click chemistry strategy (including thiol-ene and epoxy-amine additions). These as-prepared CPTEs were found to exhibited outstanding antibacterial activity against Escherichia coli and Staphylococcus aureus with minimum inhibitory concentrations against E. coli of 7.3, 14.6, and 14.6 μg ml−1, and against S. aureus of 14.6, 29.2, and 29.2 μg ml−1, respectively. The antibacterial activity is coincident with their degree of branching (DB, their DB values of 0.81, 0.48, and 0.27), which is mainly attributed to the inherent three-dimensional structure. The present strategy reveals the relationship of polymer topology and antibacterial activity, providing a novel possibility for designing and/or synthesis of high-efficiency antibacterial agents.  相似文献   
77.
Although cocrystallization has provided a promising platform to develop new organic optoelectronic materials, it is still a big challenge to purposely design and achieve specific optoelectronic properties. Herein, a series of mixed-stacking cocrystals (TMFA, TMCA, and TMTQ) were designed and synthesized, and the regulatory effects of the acceptors on the co-assembly behavior, charge-transfer nature, energy-level structures, and optoelectronic characteristics were systematically investigated. The results demonstrate that it is feasible to achieve effective charge-transport tuning and photoresponse switching by carefully regulating the intermolecular charge transfer and energy orbitals. The inherent mechanisms underlying the change in these optoelectronic behaviors were analyzed in depth and elucidated to provide clear guidelines for future development of new optoelectronic materials. In addition, due to the excellent photoresponsive characteristics of TMCA, TMCA-based phototransistors were investigated with varying light wavelength and optical power, and TMCA shows the best performance among all reported cocrystals under UV illumination.  相似文献   
78.
Heparin binds to and activates antithrombin (AT) through a specific pentasaccharide sequence, in which a trisaccharide subsite, containing glucuronic acid (GlcA), has been considered as the initiator in the recognition of the polysaccharide by the protein. Recently it was suggested that sulfated iduronic acid (IdoA2S) could replace this “canonical” GlcA. Indeed, a heparin octasaccharidic sequence obtained by chemoenzymatic synthesis, in which GlcA is replaced with IdoA2S, has been found to similarly bind to and activate antithrombin. By using saturation-transfer-difference (STD) NMR, NOEs, transferred NOEs (tr-NOEs) NMR and molecular dynamics, we show that, upon binding to AT, this IdoA2S unit develops comparable interactions with AT as GlcA. Interestingly, two IdoA2S units, both present in a 1C4-2S0 equilibrium in the unbound saccharide, shift to full 2S0 and full 1C4 upon binding to antithrombin, providing the best illustration of the critical role of iduronic acid conformational flexibility in biological systems.  相似文献   
79.
80.
A series of tetraimidazolium salts with different anions was prepared and applied in the isomerization of β-pinene oxide. After examining the activity of different catalysts, a remarkable enhancement of the selectivity of perillyl alcohol (47 %) was obtained over [PEimi][HNO3]4 under mild reaction conditions and using DMSO as the solvent. Furthermore, noncovalent interactions between solvent molecules and the catalyst were found by FT-IR spectroscopy and confirmed by computational chemistry. The homogeneous catalyst showed excellent stability and was reused up to six times without significant loss.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号